Bitter Data
Research: An Exploration into Data Edibilization of Negative Emotion
Data Edibilization \ Data Physicalization \ Data Art \ Emotional Data
Published in VIS Art Program 2023, w\ Yue Huang & Kang Zhang & Varvara Guljajeva
Link: Paper
Bitter Data transforms 100,000 distress postings from Chinese social media into a multi-sensory experience using data edibilization. We’ve mapped distress data quantity to the bitterness and color of tea through data analysis and experimentation.
Participants taste, smell, and observe 11 cups of tea, each embodying a year’s distress data, in our workshop. Their facial expressions, recorded upon tasting, visually indicate emotional states. This project explores benefits and pragmatic solutions to challenges of data edibilization.
This is the second phase of the Trouble Overload. In the first phase, the expression of trouble data overshadowed the emotions of the individuals that make up the big data, creating a sense of detachment and objectivity that distanced the audience from the work. In this phase, taste and color are introduced to allow the audience to personally experience the bitterness embedded in the data.
苦涩的数据将十万条来自中国社交媒体的烦恼留言转化为一种多感官体验,通过“数据可吃化”进行呈现。我们通过数据分析与实验,将烦恼数据的数量映射到茶的苦味和颜色上。
在我们的工作坊中,参与者可以品尝、嗅闻并观察11杯茶,每杯茶代表一年间的烦恼数据。参与者品尝时的面部表情被记录下来,用于直观呈现他们的情绪状态。这个项目旨在探索数据可吃化的潜在益处以及应对其挑战的实际解决方案。
这个项目是烦恼过载的第二阶段尝试。第一阶段对烦恼数据的表达掩盖了组成大数据的个体的情绪,理解的距离和数据的客观让观众与作品之间始终存在隔阂。这一阶段的尝试加入了味觉与颜色,让观众亲身经历这份数据的苦楚。
Data and Mapping
Beijing Quanyechang Cultural Arts Center, Beijing, 2023